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Superconfinement tailors fluid flow at microscales
Siti Aminah Setu1,2, Roel P.A. Dullens1, Aurora Hernández-Machado3, Ignacio Pagonabarraga4,

Dirk G.A.L. Aarts1 & Rodrigo Ledesma-Aguilar5,6,7

Understanding fluid dynamics under extreme confinement, where device and intrinsic fluid

length scales become comparable, is essential to successfully develop the coming

generations of fluidic devices. Here we report measurements of advancing fluid fronts in such

a regime, which we dub superconfinement. We find that the strong coupling between

contact-line friction and geometric confinement gives rise to a new stability regime where

the maximum speed for a stable moving front exhibits a distinctive response to changes in

the bounding geometry. Unstable fronts develop into drop-emitting jets controlled by thermal

fluctuations. Numerical simulations reveal that the dynamics in superconfined systems

is dominated by interfacial forces. Henceforth, we present a theory that quantifies our

experiments in terms of the relevant interfacial length scale, which in our system is the

intrinsic contact-line slip length. Our findings show that length-scale overlap can be used as a

new fluid-control mechanism in strongly confined systems.
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T
he ability to control the motion of fluids in nano- and
microfluidic devices is of fundamental and practical
interest in a variety of fields1,2 with promising

applications that range from health3 to materials science4.
Confinement plays a primary role in microfluidic control:
hydrodynamic interactions between free and stationary solid
boundaries can be used, for example, to steer suspended colloids
according to their shape5. On the other hand, the competition
between viscous and capillary effects mediated by channel
geometry can be used to manipulate interfacial structures.
Drops are arguably the most exploited fluid structures in
microfluidics, acting, for example, as carriers and mixers6.
Precise production and manipulation of drops demands a
quantitative understanding of how solid–fluid interactions affect
flow patterns, including the effect of the channel walls and
wetting7,8.

Current drop-based microfluidic devices rely on nonlinear
channel geometries, such as T-junctions and flow focusing
constrictions, to induce the pinch-off of droplets from a mother
stream (Fig. 1a). A common trait of these set-ups is that they
operate in the well-developed hydrodynamic limit. In such a case,
the length scale of the confining devices is well above any
microscopic length scale of the fluid. As a consequence, one
expects that the dominant contributions to the fluid dynamics
come from forces acting on the volume of the fluid, such as
pressure gradients and viscous friction forces. The limit of sharp
length-scale separation breaks down as one enters the nanofluidic
regime9, or, equivalently, in microfluidic systems containing
complex fluids, such as colloidal mixtures, liquid crystals and
bacterial suspensions, where the ‘molecular’ size can be of the
order of microns. For such strongly confined systems one expects
that the dynamics is increasingly dominated by the interaction
with confining walls. Specifically, for fluid–fluid–solid systems the
range of interfacial forces can be characterized in terms of a
contact-line slip length, lD, which is an intrinsic length scale of the
solid–fluid system10–12. Contact-line slip affects the stability of
moving fronts, as it determines the critical speed at which the
contact line can move before it lags behind the rest of the fluid
front13. Such an entrainment mechanism is determined by the

small-scale motion of fluid molecules flowing past the solid near
the contact line, which determines how fast it can move14. For
large systems, the separation between lD and the typical length
scale of the flow has been shown to affect the way in which solid–
fluid interactions control the critical speed15,16. This has helped to
explain complex interface dynamics reported in a variety of
experiments16–20. However, little is known about how multiphase
systems respond under extreme confinement, where the system
size and the contact-line slip length become comparable.

In this paper we exploit the dominant role of interfacial forces
in superconfinement to control fluid flow at small scales. As
shown in Fig. 1b, by forcing a phase-separated colloid–polymer
mixture on the bottom wall of a microchannel, the three-phase
contact line can be slowed down relative to the leading front,
destabilizing the interface. The critical speed at which such a
transition occurs, U*, decreases with increasing channel thickness
H (data points in Fig. 1b). This allows us to control the formation
of liquid jets and drops by varying the degree of confinement in
linear microchannels. Our concept thus departs from a paradigm
in microfluidics, which is the use of complex geometries to
achieve fluid control. Using numerical simulations we show that
the fluid dynamics is controlled by the interplay between the
intrinsic contact line slip length and the thickness of the
microchannel. This allows us to formulate a scaling model that
predicts a strong decay of the critical velocity with the channel
thickness, in agreement with the experimental data (solid line in
Fig. 1b). Our experiments show that by controlling the degree of
confinement, it is possible to trigger the formation of different
fluid structures, including drops, jets and drop-emitting fingers.

Results
Front instability induced by superconfinement. Our experi-
mental results are summarized in Fig. 2, where we have probed
the dynamics of a superconfined forced front coupled to a contact
line using two demixed colloid–polymer phases. The interface
thickness of our mixtures, x, which is representative of the
order of magnitude of the contact-line slip length lD, is of
the order of microns (xE1.2 mm). This allows us to access the
superconfined regime in micron-sized channels. As opposed
to more traditional set-ups, the large interface scale in our
experiments offers the additional advantage of directly visualizing
the front and the contact line at the scale of thermal fluctuations
using confocal microscopy21,22. To favour the formation of a
fluid front advancing on a solid, we injected two co-existing
colloid–polymer phases into a rectangular microfluidic channel,
displacing the more viscous polymer-rich, colloid-poor
‘gas’ phase with the less viscous polymer-poor colloid-rich
‘liquid’ phase (Fig. 2a). The low surface tension of our
mixtures, g¼ 30 nN m� 1, sets a comparatively small capillary
length, lC �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g=Drg

p
� 14 mm, where Dr is the density

difference between the fluids and g is the acceleration due to
gravity. At large enough velocities, the interface develops into a
three-dimensional (3D) finger by virtue of the Saffman–Taylor
instability22 (Fig. 2b). Because lC is of the order of the channel
thickness H, the finger adheres to the bottom plate22 creating a
thin film of thickness hf, which occupies roughly half of the
channel thickness (Fig. 2c).

The interface reaches a well-defined maximum speed U*, at
which point entrainment occurs (Fig. 2d and Supplementary
Movie 1). Henceforth, the contact line, of speed V, moves slower
than the leading front, of speed U (Fig. 2d; left panels). This
mismatch causes the interface to develop into a jet whose neck
collapses, giving rise to the periodic release of droplets (Fig. 2d;
right panels). The critical driving speed is strongly dependent on
confinement and decays with the channel thickness (Fig. 1b).

T-junction

Flow focusing

3.0
Superconfinement

2.5

2.0

�U
*/

�

1.5

1.0
6 8 10 12 14 16 18 20

H (μm)

H

H

ˆ

Figure 1 | Drop production in standard and superconfined microfluidic

set-ups. (a) Traditional microfluidic set-ups rely on drop geometry to

trigger the formation of drops. (b) In superconfinement, the ability of a

forced liquid front to cover a microchannel wall can be controlled by varying

the thickness of the channel. Our experimental results (symbols) show that

drops are produced above a critical driving velocity U*, which can be

controlled by varying the thickness of the microchannel, H. The solid line

corresponds to the theoretical prediction (see text). Speeds are measured

in units of the capillary speed, g=Ẑ, where g is the interfacial tension and Ẑ is

the mean viscosity of the fluids (see Methods for further information on the

experimental set-up and data analysis).
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Hydrodynamics of superconfined fronts. To gain insight into
the mechanisms governing the front dynamics at length scales
comparable to the interface scale, we carried out numerical
simulations of the mesoscopic hydrodynamic equations of a
binary fluid model. The model is valid to describe the fluid
dynamics at length scales larger than, but still comparable to, the
interface thickness x (refs 10–12). In our simulations, the
composition of the colloid–polymer mixture is described by a
single concentration variable, f, which varies between two
equilibrium values over the length scale of the interface, x. As
usual, the fluid dynamics is governed by mass and momentum
conservation. For incompressible flows, this leads to the following
system of equations:

r @tvþðv � rÞvð Þ ¼ �rpþ Zr2v�frm; ð1Þ
and

@tfþ v � rf ¼ Mr2m: ð2Þ
Equation (1) is the usual Navier–Stokes equations for an
incompressible fluid, where r is the fluid density, Z is the viscosity
and p and v are the pressure and velocity fields, respectively.
The last term on the right-hand side includes the interfacial
contributions to the dynamics. It depends on the chemical
potential m and gives rise to interfacial and contact line forces.
The dependence of the chemical potential on the concentration
field is determined by the equilibrium properties of the system. In
the present case, we resort to the well-known Ginzburg–Landau
model, for which mðfÞ ¼ � 3g

2 f�f3� x
2r2f

� �
: Equation (2),

known as the Cahn–Hilliard convection-diffusion equation,
governs the transport of the concentration field f. Advective
transport arises from the coupling term on the left-hand side.
Diffusive transport arises from inhomogeneities in the chemical
potential field, represented by the term on the right-hand side,
and is controlled by the mobility parameter M.

Using a lattice-Boltzmann numerical algorithm (see Methods),
we integrated equations (1) and (2) for a front forced between two
parallel plates (see Fig. 3). We resort to two-dimensional (2D)
simulations that capture the relevant contact-line physics12,19.
The concentration and velocity fields are shown in Fig. 3a. The
scale of the interface is clearly visible; to mimic the experimental
conditions we fixed its value to be comparable to the separation
between the plates, H. In such a regime, the simulations show that
the velocity field close to the interface is homogeneous and does
not vary appreciably over length scales comparable to the channel
thickness. The slip velocity, which corresponds to the tangential

component of the velocity field to the wall, deviates from the stick
boundary condition over length scales comparable to the channel
thickness (Figs 3b and 4a). This sharply contrasts with
macroscopic systems, where such deviations occur over length
scales much smaller than the channel thickness and are thus not
expected to contribute dominantly to the overall fluid dynamics.
In the superconfined regime this picture changes. Figure 3b shows
the velocity profile close to the wall. The velocity peaks at the
contact line and decays over a length scale lD, which is larger than
the interface thickness (indicated in the figure by the width of the
gradient of the concentration field). From the simulations, the
ratio of the two length scales was found to be x/lDE0.42. The
local deviation from the stick boundary condition arises from the
imbalance in the chemical potential caused by the deformation of
the interface, which allows the contact line to move by virtue of
diffusive transport11,12. The chemical potential deviations from
equilibrium decay over the same length scale lD as shown in Fig. 3c.

Stability of superconfined fronts. On the basis of the numerical
results, we are in a position to formulate a scaling model to
predict the critical velocity in superconfinement. In our experi-
ments, the front is driven by a fixed pressure gradient that results
in a strong deformation of the interface (Fig. 4b). Close to the
solid, this deformation offsets the contact angle from its equili-
brium value ye inducing a Young’s force, FY¼ g(cosye–cosym),
that pushes the contact line. Note that FY depends on deviations
of the interface from its equilibrium configuration (ym¼ ye)
through the microscopic contact angle ym (Fig. 4c). The driving
force is opposed by the contact-line friction force, FCLBzV,
which arises from the sliding of fluid molecules past the solid and
thus depends on their speed V. The friction coefficient z � Ẑx=lD
characterizes the extent over which slip occurs, and is fixed by x,
lD and the average viscosity Ẑ � 1

2ðZLþ ZGÞ.
The contact-line speed V is set by the local balance (per unit

length of the contact line) between FY and FCL, leading to the
contact-line friction law13,15,23

V ¼ g
z

cosye� cosymð Þ: ð3Þ

The speed of the front, on the other hand, is set by a global
balance (also per unit length of the contact line) between the
viscous and capillary forces acting on the fluid wedges that meet
at the wall (boxed region in Fig. 4b). At scales comparable to lD,
the fluids are pushed by the capillary force density, Bqxgk,
arising from spatial variations of the local interface curvature k.
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Figure 2 | Interface dynamics in superconfinement. (a) Two colloid–polymer phases of ultra-low surface tension, g¼ 30 nN m� 1, and different densities

(rL4rG) and viscosities (ZLoZG), are forced in a microfluidic channel of fixed width W¼ 110mm and variable thickness H¼ 8, 10, 14, 17mm. (b,c) The

interface in the plane of the channel develops into a viscous finger (b), which adheres to the bottom plate of the channel to form a thin film (c). (d) Above a

threshold driving speed, U*, the front is destabilized; the contact line, of speed VoU*, is unable to follow the rest of the interface, of speed U4U*. This

mismatch gives rise to the formation of a fluid jet that releases drops periodically. Scale bars in b–d, 50, 10 and 10mm, respectively.
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This force is resisted by the viscous force density coming from
both phases, BZir2u, where i¼ {L, G}. From our numerical
results, we expect r2u � U=l2

D. Integrating the force densities
over the size of the liquid and gas wedges then gives

gklDþ g cosym� cosyð Þ ¼ cẐU ; ð4Þ
where y is the local bending angle of the interface. The first two
terms in equation (4) correspond to the net capillary force, which

consists of the Laplace pressure exerted by the fluid lying in front
of the wedge, and of two tension forces pulling on the corners
(light arrows in Fig. 4c). The right-hand side corresponds to the
total viscous force originating from the flow within each fluid.
Because the viscosities of both fluids are of the same order of
magnitude, the total viscous force, corresponding to the right-
hand side of equation (4) can be modelled as a single term, where
c is a numerical prefactor.
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Figure 3 | Numerical simulations of flow patterns in superconfinement. (a) The concentration and velocity fields for a forced interface between parallel

plates. The concentration profile of two demixed phases (colour intensity map) varies across the interface length scale x. The colloid-rich phase is

represented in bright green and the polymer-rich phase in dark grey. The arrows represent the velocity field, which is homogeneous over length scales

comparable to the system size, including the region in contact with the stationary bottom wall. (b) Velocity profile and concentration gradient close to the

wall. The slip velocity deviates from the stick boundary condition over a length scale, lD, larger than the interface length scale x. (c) Chemical potential

profile along the wall. The slip profile originates from deviations of the chemical potential, m, from equilibrium. The length scales over which deviations

decay is given by the same length scale lD.
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Figure 4 | Contact-line speed and interface configuration at the onset of

entrainment. (a) Schematic of the slip velocity profile, u(x, z¼0), close to

the contact line. The fluid velocity decays at distances comparable to the

contact-line slip length, lD. (b) Interface configuration at the critical speed in

a 14-mm-thick channel, just before drop emission. (c) Schematic

representation of the interface configuration close to the contact line

(amplified from frame b). The shape of the interface is characterized by the

local curvature k¼ 1/R, where the radius of curvature is measured at the tip

of the front, the bending angle y and the microscopic contact angle ym. The

surface tension and Laplace pressure forces arising from the deformation of

the interface are shown as light arrows. The contact line and front speeds, V

and U, are indicated as dark arrows. (d) Critical curvature of the interface as

a function of the channel thickness. The curvature was measured from the

experimental interface profiles by fitting a circular arc at the tip of the front.

Scale bar in b, 10mm. Error bars correspond to the s.d. of the sample.
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At the onset of entrainment the contact-line speed reaches a
maximum, V¼U¼U*. In contrast with unbounded fronts,
where the profile can adjust freely to the external driving, in
superconfinement we expect that the critical interface curvature is
set by the channel thickness, that is, k*B1/H. To confirm this
argument, we measured the critical interface curvature at the tip
of the front. Results are shown in Fig. 4d, which confirms the
linear relation k*¼ aH� 1, with aE3.6. Eliminating ym from
equations (3) and (4) we find that the critical speed obeys

ẐU�

g
¼ lD

xþ clD

alD
H
þ cosye� cosy%

� �
; ð5Þ

where y* is the critical bending angle.
Equation (5) predicts an algebraic decay of the critical speed

with the channel thickness, consistent with our experiments
(Fig. 1b). The algebraic dependence on the system size, H, arises
from the linear scaling of the critical radius of curvature with the
channel thickness, which sets the maximum deformation that the
interface can sustain before destabilizing. This contrasts with
previous predictions of entrainment in open15 and confined
systems24 at large length-scale separations (HclD) where the
dependence of the critical velocity with the system size is
controlled by volume contributions to viscous friction, scaling as
ln(H/lD). In superconfinement, where HClD, such contributions
are subdominant. Instead, the relevant contribution to friction is
dominated by the contact line, which is independent of the
system size.

To compare the theoretical prediction with the experiments we
define the threshold speed at the point where y reaches 90�, which
is the point where the front begins to destabilize. This criterion
can underestimate the value of the true critical angle y*, but does
not affect the scaling with the confining length scale H, which is
the matter of interest. A best fit of the data shown in Fig. 1b to
equation (5) allows us to extract the contact-line slip length and
the prefactor c as fitting parameters. We find lDE3.8 mm. The
ratio x/lDE0.32 is in good agreement with the value measured
from our numerical simulations. Recently, it has been shown that
small values of x/lD (compared with unity) can strongly reduce
the large-scale stability of forced fronts by fixing the shape of the
interface close to the contact line15. Such an interplay between
contact-line and bulk friction can give rise to different
entrainment regimes depending on the wetting properties of a
given solid–fluid system. Using superconfinement to estimate the

contact-line friction coefficient can therefore prove useful to
exploit surface specificity in controlling front dynamics.

Tailoring structures, jet formation and drop emission. Beyond
the onset of entrainment, the interface also responds to changes
in confinement. This is reflected in the periodic emission of drops
shown in Fig. 5a and Supplementary Movie 2, whose size and rate
of release can be controlled by choosing the channel thickness
(Fig. 5b,c). Drop emission begins with the slow down of the
contact line relative to the front, which triggers the growth of a
liquid jet. For small H, when the jet and interface thicknesses are
comparable, the jet develops a thinning neck that connects to a
nascent drop, which is then released (Fig. 5d). Because the speed
of the front is kept above the entrainment threshold, subsequent
drops are emitted at a constant rate.

The volume of the drops (Fig. 5b) is fixed by the snap-off
process, which sets the typical fluid volume flowing into the jet
(of thickness Bhf) over the snap-off time ts, that is,
vjet � ph2

f ðU �VÞts=2: As shown in the figure, vjet is generally
larger than the volume of the drops, which we estimate assuming
an ellipsoidal shape as vdropE4p(2r||)2(2r>)/3 where r|| and r>
are the drop radii of curvature in the parallel and perpendicular
planes to the wall. The mismatch between vjet and vdrop is caused
by the typically long necks that develop, which are absorbed by
the main front once the drop is released.

The growth of the drop size with H observed in Fig. 5b arises
because both hf � 1

2H
� �

and ts increase with the channel
thickness. Since the thickness of the neck connecting the jet to the
drop, hn, is comparable to the interface thickness x, we expect
that its collapse is dominated by thermal fluctuations.
This contrasts with drop emission at large scales, where the
neck collapse is dominated by hydrodynamics19. The fluctuation-
dominated neck breakup is characterized by double-cone jet
profiles25–27 and by a faster (algebraic) decay than that of
macroscopic jets, which is linear28. Following ref. 29, the collapse
of the neck obeys hn(t)B(ts–t)a, where aE0.42. Since hnBH, we
expect that the snap-off time obeys tsBH1/a. This prediction is
tested against the experimental data in Fig. 5c, showing a good
agreement. Remarkably, for the thicker channel used in our
experiments (H¼ 17mm) the jet is stabilized after one snap-off
event and no further drops are emitted in the timescale of the
experiment (Fig. 5e). This suggests a cross-over to macroscopic
hydrodynamics where viscous stresses coming from the flow
within the jet hamper its collapse.
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Figure 5 | Jet formation and drop emission in superconfinement. (a) Periodic emission of drops above the onset of entrainment. (b) Volume of the jet,

and of the emitted drops, as a function of the channel thickness. The larger jet volume value at H¼ 14mm reflects the long snap-off time of the neck at large

H relative to the interface thickness. (c) The snap-off time increases algebraically with H. (d) Growth of a liquid jet from the contact line (top) and collapse

to release a drop (bottom) at H¼ 14mm. (e) Stabilization of the emitted jet at H¼ 17mm. Scale bars in a,d,e, 50, 10 and 10mm, respectively. Error bars

correspond to the s.d. of the sample.
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The combination of low surface tension and strong
confinement in our set-up can be further exploited to
induce the formation of complex structures; by quickly
forcing the interface into our microchannels, it is possible to
trigger the formation of pairs of fingers that subsequently
emit drops concurrently (Fig. 6 and Supplementary Movie 3).
These experiments indicate the feasibility of manipulating fluids
through the combination of low surface tension and super-
confinement, and open the possibility of controlling the stability
and synchronization of the emerging structures.

Discussion
We experimentally probe the dynamics of fluid mixtures in
superconfinement, allowing us to extract the contact-line slip
length and to deduce the contact-line friction coefficient. Because
of the overlap between the channel and fluid length scales
inherent to superconfinement, our method can be used to infer
the microscopic friction processes of fluid mixtures indepen-
dently from the bulk hydrodynamics. This information can then
be used to resolve the coupling between large- and small-scale
hydrodynamics in a particular set-up.

Our results show that the interplay between front and contact-
line dynamics in superconfinement leads to a distinctive
interfacial instability. By choosing the degree of confinement,
we have shown that fluid entrainment, jet formation and drop
emission can be either induced or suppressed. Such a strategy can
be used to control fluid dynamics at small scales.

Because of the universality of length-scale overlap, our findings
highlight the need to explore other important phenomena in
superconfinement. For instance, our results suggest that dynamic
wetting can be controlled by matching the interfacial length scale
to the typical feature size of topographically nanopatterned
surfaces. Further exploration of hydrodynamic instabilities30,
superhydrophobicity31, elastocapillarity32 and active33 and soft

matter dynamics34 in superconfinement can potentially help us
harness fluid manipulation at extremely small scales.

Methods
Experiments. We used a mixture of fluorescently labelled poly(methyl metha-
crylate) particles (diameter¼ 210 nm) and non-adsorbing xanthan polymer
(molecular weight¼ 4� 106 g mol� 1, radius of gyration¼ 264 nm) dispersed in
water35. At high enough polymer concentrations, the mixture phase separates
spontaneously in a colloid-rich polymer-poor ‘liquid’ phase in co-existence with a
colloid-poor polymer-rich ‘gas’ phase due to the depletion interaction mediated by
the polymers36,37. For the state point used in our experiments the surface tension,
g¼ 30 nN m� 1, and interface thickness, xE1.2 mm, were measured from the
capillary-wave spectrum21. The equilibrium contact angle, ye¼ 0�, was determined
from the interface profile close to a vertical wall38. The viscosity of each phase was
measured on a TA AR-G2 rheometer. Both viscosities remained in the Newtonian
regime for a wide range of applied shear rates, giving ZL¼ 7 mPa � s for the liquid
phase and ZG¼ 15 mPa � s for the gas phase. After the phase separation had
completed, we carefully isolated the two phases; the two fluids were subsequently
injected into a cross-channel microfluidic device (of fixed width W¼ 110mm and
variable thickness H¼ 8, 10, 14, 17mm), at which point they were in co-existence
again. The displacing liquid phase was slowly injected to form a flat interface with the
resident gas phase at the centre of the cross-channel before a driving pressure gradient
was imposed. Gravity was used to control the pressure difference between the inlet and
outlet of the channel. The resulting flow was imaged in 3D by means of confocal laser
scanning microscopy (Zeiss Exiter), which records the fluorescence of the colloids.

The uncertainty of experimental measurements corresponds to the s.d. of the
sample, of size N. The experimental data presented in Figs 1, 4 and 5 is presented
in Tables 1–3.

Numerical. Simulations of equations (1) and (2) were performed using the lattice-
Boltzmann algorithm. The cross-section of the microchannel is modelled as a 2D
rectangular domain of total area S. This is discretized into a square lattice com-
posed of nodes joined by links. At each node, we consider two sets of one-particle
distribution functions, fi and gi, each associated with a set of microscopic
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e

Figure 6 | Tip-splitting and concurrent drop emission. At high values of

the capillary ratio, ẐU=g � 3, the front splits into two fingers that

subsequently destabilize and emit drops periodically. Scale bar, 100 mm.

Table 1 | Data presented in Fig. 1b.

H (lm) N U* (lm s� 1) ẐU*/g

17 1 4.43 1.62
14 3 5.01±0.30 1.84±0.22
10 12 5.96±0.57 2.19±0.42
8 10 6.75±0.29 2.48±0.11

In this table, H is the thickness of the channel, N is the number of measurements, U* is the
critical speed, Ẑ is the average viscosity of the fluids and g is the interfacial tension.

Table 2 | Data presented in Fig. 4d.

H (lm) N R* (lm) j* (lm� 1)

17 1 4.08 0.24
14 3 3.71±0.47 0.27±0.03
10 12 2.63±0.96 0.38±0.14
8 10 2.36±0.28 0.42±0.05

In this table, H is the thickness of the channel, N is the number of measurements, R* is the radius
of curvature at the critical point measured at the tip of the front and k*¼ 1/R* is the interface
curvature.

Table 3 | Data presented in Fig. 5b,c.

H (lm) N U (lm s� 1) V (lm s� 1) r|| (lm) hf (lm) ts (s)

14 3 5.84±0.42 3.84±0.16 7.3±1.48 7.20±0.27 18.43±4.17
10 12 6.55±1.55 4.96±1.11 5.9±0.73 6.11±0.41 7.57±1.30
8 10 7.51±1.23 4.61±0.26 5.2±0.75 5.64±0.14 5.21±2.03

In this table, H is the thickness of the channel, N is the number of measurements, U is the speed
of the leading front, V is the speed of the contact line, r|| is the radius of curvature in the xy plane,
measured at the tip of the front, hf is the thickness of the film and ts is the average snap-off time
of a detaching droplet.
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velocity vectors {ci}. The distribution functions evolve according to the discretized
Boltzmann equations

fiðrþ ciDt; tþDtÞ� fiðr; tÞ ¼ � Dt
tf
ðfi � f eq

i Þ; ð6Þ

and

giðrþ ciDt; tþDtÞ� giðr; tÞ ¼ � Dt
tg
ðgi � geq

i Þ; ð7Þ

where r is the Cartesian position vector and t is time. Equations (6) and (7) consist
of two steps. First, there is a collision step between fluid particles (right-hand side
in the equations), which relax towards an equilibrium state defined by f eq

i and geq
i .

Within the single-relaxation time model used in this paper the equilibration of the
fi and gi occurs over timescales tf and tg, which in turn determine the viscosity and
mobility parameters. Once the collision step has taken place, the distribution
functions are propagated along links joining lattice nodes to their first eight nearest
neighbours. These are defined by the set of vectors {ciDt}, where Dt¼ 1 is the time step.

The hydrodynamic variables are defined as r �
P

i fi , f �
P

i gi , rva �P
i ficia and fva �

P
i gicia, where the Greek index indicates a Cartesian

component. Mass and momentum conservation is enforced by imposing the
conditions

P
i f eq

i ¼ r,
P

i f eq
i cia ¼ rvia,

P
i geq

i ¼ f and
P

i geq
i cia ¼ fvia . In

equilibrium, the pressure tensor and chemical potential are defined throughP
i ficiacib ¼ Pab þrvavb and

P
i ficiacib ¼ mmdab þfvavb , where m is related to

the mobility parameter in equation (2) and dab is the Kronecker symbol. The
pressure tensor Pab contains the isotropic contribution of the bulk pressure and the
interfacial stresses.

The equilibrium state of the system is based on the free-energy functional

F ¼
Z

dS 1
3
r ln rþV þ 3gx

16
rfj j2

� �
; ð8Þ

where the first two terms correspond to the the volume contributions to the free-
energy density and the last term is the interfacial free-energy density. The colloid–
polymer mixture is modelled by way of the Ginzburg–Landau free energy,
V ¼ � 3gðf2=2�f4=4Þ=2. Minimization of the free-energy functional leads to
explicit expressions of m and Pab in terms of r and f. These can then be linked to
the equilibrium distribution functions f eq

i and geq
i . For a standard discussion of the

lattice-Boltzmann algorithm the reader is referred to ref. 39.
Simulations were carried out in a rectangular channel of length L¼ 150 and

height H¼ 100 in lattice units. The top and bottom walls were implemented using
standard bounce-back boundary conditions for the distribution functions. Periodic
boundary conditions were imposed along the longitudinal direction. The initial
configuration consisted of each of the two phases occupying half of the domain
along the longitudinal direction. The material parameters, in lattice units, were
fixed to r¼ 1, M¼ 1.0, g¼ 0.005, x¼ 1 and Ẑ ¼ 0:1. To drive the deformation of
the interface, a shear rate between the two plates U/H¼ 2� 10� 5 was imposed.
The simulations were run for 5� 105 steps, after which a well-developed steady
state was obtained.
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32. Carré, A., Gastel, J.-C. & Shanahan, M. E. R. Viscoelastic effects in the

spreading of liquids. Nature 379, 432–434 (1996).
33. Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Cond.

Matter Phys. 1, 323–345 (2010).
34. Bartolo, D. & Aarts, D. G. A. L. Microfluidics and soft-matter: small is useful.

Soft Matter 8, 10530–10535 (2012).
35. Jamie, E. A. G., Davies, G. J., Howe, M. D., Dullens, R. P. A. & Aarts, D. G. A. L.

Thermal capillary waves in colloidpolymer mixtures in water. J. Phys. Condens.
Matter 20, 494231 (2008).

36. Asakura, S. & Oosawa, F. On interaction between two bodies immersed in a
solution of macromolecules. J. Chem. Phys. 22, 1255–1256 (1954).

37. Vrij, A. Polymers at interfaces and the interactions in colloidal dispersions.
Pure Appl. Chem. 48, 471–483 (1976).

38. Aarts, D. G. A. L. Capillary length in a fluid-fluid demixed colloid-polymer
mixture. J. Phys. Chem. B 109, 7407–7411 (2005).

39. Kendon, V. M., Cates, M. E., Pagonabarraga, I., Desplat, J.-C. & Bladon, P.
Inertial effects in three-dimensional spinodal decomposition of a symmetric
binary fluid mixture: a lattice Boltzmann study. J. Fluid Mech. 440, 147–203
(2001).

Acknowledgements
We are indebted to Denis Bartolo for a critical reading of this manuscript. R.L.-A. thanks
Sumesh Thampi for useful discussions, and Somerville College (Fulford Fellowships), Marie
Curie Actions (FP7-PEOPLE-IEF-2010 no. 273406) and King Abdullah University of Sci-
ence and Technology (KAUST) award no. KUK-C1-013-04 for financial support. A.H.-M.
acknowledges partial support from MINECO (Spain) under project FIS 2013-47949-C2-1-P
and DURSI 2014 SGR878. I.P. acknowledges financial support from MINECO (Spain) and
DURSI under projects FIS2011-22603 and 2009SGR-634, respectively. S.A.S. acknowledges
financial support from Ministry of Higher Education Malaysia (MOHE) and Universiti
Teknologi Malaysia (UTM), and D.G.A.L.A. from EPSRC grant EP/H035362/1.

Author contributions
D.G.A.L.A, I.P. and R.L.-A. conceived the idea. D.G.A.L.A, S.A.S. and R.P.A.D. designed
the experiments. S.A.S. carried out the experiments and analysed the experimental data.
R.L.A. carried out the numerical simulations. A.H.-M, I.P. and R.L.-A. developed the
analytical model and analysed the numerical data. R.L.-A. led the writing of the paper
with contributions from all co-authors.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8297 ARTICLE

NATURE COMMUNICATIONS | 6:7297 | DOI: 10.1038/ncomms8297 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications


Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Setu, S. A. et al. Superconfinement tailors fluid flow at
microscales. Nat. Commun. 6:7297 doi: 10.1038/ncomms8297 (2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8297

8 NATURE COMMUNICATIONS | 6:7297 | DOI: 10.1038/ncomms8297 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Front instability induced by superconfinement

	Figure™1Drop production in standard and superconfined microfluidic set-ups.(a) Traditional microfluidic set-ups rely on drop geometry to trigger the formation of drops. (b) In superconfinement, the ability of a forced liquid front to cover a microchannel 
	Hydrodynamics of superconfined fronts
	Stability of superconfined fronts

	Figure™2Interface dynamics in superconfinement.(a) Two colloid-polymer phases of ultra-low surface tension, gamma=30thinspnNthinspm-1, and different densities (rgrLgtrgrG) and viscosities (eegrLlteegrG), are forced in a microfluidic channel of fixed width
	Figure™3Numerical simulations of flow patterns in superconfinement.(a) The concentration and velocity fields for a forced interface between parallel plates. The concentration profile of two demixed phases (colour intensity map) varies across the interface
	Figure™4Contact-line speed and interface configuration at the onset of entrainment.(a) Schematic of the slip velocity profile, u(x, z=0), close to the contact line. The fluid velocity decays at distances comparable to the contact-line slip length, lD. (b)
	Tailoring structures, jet formation and drop emission

	Figure™5Jet formation and drop emission in superconfinement.(a) Periodic emission of drops above the onset of entrainment. (b) Volume of the jet, and of the emitted drops, as a function of the channel thickness. The larger jet volume value at H=14thinspmg
	Discussion
	Methods
	Experiments
	Numerical

	Figure™6Tip-splitting and concurrent drop emission.At high values of the capillary ratio,  U/ ,,3, the front splits into two fingers that subsequently destabilize and emit drops periodically. Scale bar, 100thinspmgrm
	Table 1 
	Table 2 
	Table 3 
	WhitesidesG. M.The origins and the future of microfluidicsNature4423683732006JesorkaA.OrwarO.Nanofluidics: neither shaken nor stirredNat. Nanotechnol.7672012SiaS. K.WhitesidesG. M.Microfluidic devices fabricated in poly(dimethylsiloxane) for biological st
	We are indebted to Denis Bartolo for a critical reading of this manuscript. R.L.-A. thanks Sumesh Thampi for useful discussions, and Somerville College (Fulford Fellowships), Marie Curie Actions (FP7-PEOPLE-IEF-2010 no. 273406) and King Abdullah Universit
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




