Cooperative effects in biological suspensions: From filaments to propellers

We analyze the role of hydrodynamic cooperativity in different systems of biological interest. We describe alternative approaches to model the dynamics of suspensions which account for realistic dynamic coupling on the length and time sales in which mesoscopic suspended particles (such as semiflexible filaments and swimmers) evolve. The time evolution and transport of such systems, which are relevant in physical biology, are studied in detail.We consider the interactions in the dynamic response of inextensible semiflexible filaments subject to uniform external drivings and describe the interplay between elastic and hydrodynamic stresses. We analyze how such couplings give rise to a rich phenomenology in their dynamics. Using a complementary mesoscopic approach, we also discuss the dynamic regimes of suspensions of self-propelling particles which interact only through the embedding solvent.